— Reading -

1. Read quickly Sect. 8.3.
— Exercises -
2. Differentiable and homogeneous of degree 1 implies linear. Let f be a differentiable function on \mathbb{R}^{n} such that for every $h \neq 0$ and $\lambda>0$, we have $f(\lambda h)=\lambda f(h)$. Check that $f(0)=0$. Show that f is linear. Hint: apply $f(0+t)=f(0)+d f(0) . t+\|t\| \varepsilon(t)$ for $t=h$ and for $t=\lambda h$.
3. A function such that $\frac{\partial f}{\partial x}=0$ but is not constant with respect to x. Let

$$
U=\mathbb{R}^{2} \backslash\{(x, y) \mid x=0, y \geq 0\}
$$

and f the function defined on U by $f(x, y)=\left\{\begin{array}{rl}0, & y<0 \\ y^{2}, & y \geq 0, x>0 \\ -y^{2} & y \geq 0, x<0\end{array}\right.$. Show that f is \mathcal{C}^{1} and $\frac{\partial f}{\partial x}(x, y)=0$ in any point of U.

- Problems -

4. Another expression of the tangent space of a graph. Let ϕ be the function defined on \mathbb{R}^{3} by $\phi(x, y, z)=x^{2}+y^{2}+z^{2}-1$. We note A the $\operatorname{set} \phi^{-1}(\{0\}) \subset \mathbb{R}^{3}$.
(a) We put B for the set $B=\{(x, y, z) \in A \mid z>0\}$. Show that there exists a function f defined on some subset of \mathbb{R}^{2} such that $B=\{(x, y, z) \mid z=f(x, y)\}$. Verify that f and ϕ are differentiable in any point.
(b) Give an equation of the tangent space $T_{(a, b, c)} B$ of B at any point (a, b, c) in B.
(c) Check that $T_{(a, b, c)} B$ can also be expressed as $T_{(a, b, c)} B=(a, b, c)+\operatorname{ker} D \phi(a, b, c)$.
(d) If z is equal to 0 , is it possible to define the tangent space of $(x, y, z) \in B$?
5. Differentiability and eigenvectors of a self-adjoint map. Let $<,>$ be the usual inner product on \mathbb{R}^{n}. Let $u: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a self-adjoint linear map, i.e.,

$$
\forall x, y,<u(x), y>=<x, u(y)>
$$

(a) Show that the map $f: x \mapsto<u(x), x>$ is differentiable and $d f(x) . t=2<u(x), t>$. Hint: write f as the composition of $g: x \mapsto(u(x), x)$ and the bilinear map $h:(x, y) \mapsto<$ $x, y>$.
(b) We put $\phi(x)=\frac{\langle u(x), x\rangle}{\langle x, x\rangle}$ for every $x \neq 0$. Justify that ϕ is differentiable on $\mathbb{R}^{n} \backslash\{0\}$. Compute $d \phi$ and show that $d \phi(a)=0$ if and only if a is an eigenvector of u.

