— Reading —

1. Read quickly Sect. 8.3.

— Exercises —

- 2. Differentiable and homogeneous of degree 1 implies linear. Let f be a differentiable function on \mathbb{R}^n such that for every $h \neq 0$ and $\lambda > 0$, we have $f(\lambda h) = \lambda f(h)$. Check that f(0) = 0. Show that f is linear. *Hint: apply* $f(0 + t) = f(0) + df(0) + ||t|| \varepsilon(t)$ for t = h and for $t = \lambda h$.
- 3. A function such that $\frac{\partial f}{\partial x} = 0$ but is not constant with respect to x. Let

$$U = \mathbb{R}^2 \setminus \{(x, y) | x = 0, y \ge 0\}$$

and *f* the function defined on *U* by $f(x, y) = \begin{cases} 0, & y < 0 \\ y^2, & y \ge 0, x > 0 \\ -y^2 & y \ge 0, x < 0 \end{cases}$ Show that *f* is \mathcal{C}^1 and $\frac{\partial f}{\partial x}(x, y) = 0$ in any point of *U*.

- Problems -

- 4. Another expression of the tangent space of a graph. Let ϕ be the function defined on \mathbb{R}^3 by $\phi(x, y, z) = x^2 + y^2 + z^2 1$. We note *A* the set $\phi^{-1}(\{0\}) \subset \mathbb{R}^3$.
 - (a) We put *B* for the set $B = \{(x, y, z) \in A \mid z > 0\}$. Show that there exists a function *f* defined on some subset of \mathbb{R}^2 such that $B = \{(x, y, z) \mid z = f(x, y)\}$. Verify that *f* and ϕ are differentiable in any point.
 - (b) Give an equation of the tangent space $T_{(a,b,c)}B$ of B at any point (a, b, c) in B.
 - (c) Check that $T_{(a,b,c)}B$ can also be expressed as $T_{(a,b,c)}B = (a,b,c) + \ker D\phi(a,b,c)$.
 - (d) If z is equal to 0, is it possible to define the tangent space of $(x, y, z) \in B$?
- 5. Differentiability and eigenvectors of a self-adjoint map. Let <,> be the usual inner product on \mathbb{R}^n . Let $u : \mathbb{R}^n \to \mathbb{R}^n$ be a self-adjoint linear map, i.e.,

$$\forall x, y, < u(x), y \ge < x, u(y) \ge .$$

- (a) Show that the map $f : x \mapsto \langle u(x), x \rangle$ is differentiable and $df(x).t = 2 \langle u(x), t \rangle$. *Hint: write* f *as the composition of* $g : x \mapsto (u(x), x)$ *and the bilinear map* $h : (x, y) \mapsto \langle x, y \rangle$.
- (b) We put $\phi(x) = \frac{\langle u(x), x \rangle}{\langle x, x \rangle}$ for every $x \neq 0$. Justify that ϕ is differentiable on $\mathbb{R}^n \setminus \{0\}$. Compute $d\phi$ and show that $d\phi(a) = 0$ if and only if a is an eigenvector of u.